An Over View of Bovine Dermatophytosis

Wisal, G. Abdalla¹*

¹Department of Mycology, Central Veterinary Research Laboratory, P.O.Box 8067(Alamarat), Khartoum, Sudan.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

Editor(s):
(1) Dr. Fabio Da Costa Henry, Associate Professor, Technology of Animal Products, State University of Northern of Rio De Janeiro, UENF, Brasil.

Reviewers:
(1) Victor B. Oti, Nasarawa State University, Nigeria.
(2) Abdul Razzaq, Agricultural Research Council, Pakistan.

Complete Peer review History: http://www.sdiarticle3.com/review-history/49906

Received 28 April 2019
Accepted 07 July 2019
Published 31 July 2019

ABSTRACT

Dermatophytosis is a superficial fungal infection of hair and keratinized layers of the epidermis and is caused by keratinophilic and keratinolytic genera such as Microsporum, Trichophyton and Epidermophyton. It is an endemic infection in many countries throughout the world affecting companion animals (dogs, cats), domestic animals (calves), and laboratory animals (rabbits) as well as humans. T. verrucosum considered the main cause of ringworm in cattle. The typical lesion is a heavy, grey-white crust, circular and raised above the skin most frequently found on the head and neck. The disease can be diagnosed by direct examination, fungal culture, skin biopsy sero and molecular diagnosis methods. This review will forecast more light of the different aspects of this disease.

Keywords: Dermatophytosis; bovine; clinical feature; diagnosis treatment.

1. INTRODUCTION

Dermatophytosis (ringworm) is a superficial infection of the keratinaceous epidermidermal layers of the skin, hair and nails caused by dermatophytes (Microsporum, Trichophyton and Epidermophyton). According to their natural reservoir, dermatophytes are classified as anthropophilic, zoophilic or geophilic [1].

*Corresponding author: E-mail: wisalgafar8@gmail.com;
Ringworm fungi are found all over the world but grow best in warm and humid environments and are therefore, more common in tropical and subtropical regions where they cause considerable losses as a result of decreased production, public health concern, premature culling, treatment costs and downgrading of hides and skin [2-4].

Dermatophytosis mainly affected cattle especially young calves due to less developed immune system [5], the disease has been reported in other animals as small ruminants and human [6]. The aim of this study is to focus in different aspects of dermatophytosis in cattle.

2. PREDISPOSING FACTORS

1. Age young animal are more susceptible to disease.
2. Breed of animal.
3. Stress
4. Transportation due to crowded this increase number of infected calves.
5. Management for example poor and closed houses.
6. Climate condition mostly worm humid climate [7].

3. EPIDEMIOLOGY

Most outbreaks of Dermatophytosis in cattle often occurred in fall and winter months due to over crowdness inside housing and contact with infected objects as mangers and walls. Cattle under one year old are more susceptible to the infection especially under stressful conditions like transportation and during weaning [8,9].

The arthroconidia of the fungus is able to survive in skin scales of infected animals for up to several months in moist and dark places which lead to easily transmission to human and other animals [10]. On the other hand cattle could carry dermatophytes spores on their coats without showing any signs of disease [11].

4. ECONOMICAL IMPACTS

1. Reduce weight up to 10-13 kg/butchered animals in beef cattle.
2. Lower milk yield in dairy cattle.
3. Poor hide quality for the leather industry [1,12].

5. TRANSMISSION

Dermatophytosis transmitted through direct contact with infected animals; therefore, overcrowded stables have a high prevalence rate of infection, where the fungus can spread easily among subjects confined in small areas [13]. The disease can also be transmitted indirectly contact with contaminated fomites [14].

6. CLINICAL FEATURES

The typical lesion in cattle is a heavy, grey-white crust, circular and raised above the skin most frequently found on the head and neck, especially around the eyes and face, but may, in severe cases, be found all over the body [15,16] (Figs. 1-5).

![Fig. 1. Head of a 3 months old calf with thick, crusty, grayish-white raised lesions around the eyes (Circled) [23]](image-url)

7. ETIOLOGY

T. verrucosum considered the main cause of ringworm in cattle has been isolated by [17-22]. Outbreak of dermatophytosis in cattle caused by T. verrucosum reported by Dalis et al. [23].

T. mentagrophytes has been isolated by Agnetti et al. [24], Shams-Ghahfarokhi et al. [25]. T. soudanenses has been reported by Duartea et al. [26]. Abu-Samra et al. [27], Nweze [28] recorded M. canis. T. equinum, M. gallinae and M. gypseum. T. rubrum has been reported by Mitra et al. [29].

8. DIAGNOSIS

Diagnosis of ringworm in cattle based on clinical signs, direct microscopic examination of skin scraping and isolation of causative agent on specific medium [30].

8.1 Sample Collection

Skin scraping samples from the cattle that were suspected to be infected with dermatophytes will
be collected on the basis of gross lesion on their body after cleaning with ethyl alcohol 70%. Hair and scrapings samples were collected with forceps or scalpel just behind the extending margin in the infected area. Samples can be kept in polyethylene bags [31].

8.2 Direct Examination

Each Sample from infected cattle should be divided into two portions, one portion to be used for direct microscopic examination and the other for culture. Direct examination of hairs and scales looks for the presence of fungal hyphae and arthrospores. Hairs or hair fragments with hyphae and arthrospores are thicker, with a rough and irregular surface.

This procedure can be done with clearing agents such as Potassium Hydroxide (KOH) 10 or 20% [32-34]. Infected hairs can be readily identified at x4 or x10 magnification, appearing pale, wide and filamentous compared with normal hairs. On high magnification (x40) cuffs of arthrospores are visible (Fig. 6).

Fig. 2. Circumscribed area of alopecia filled with heavy asbestos like scales [31]

Fig. 3. A: Adult cow show regular hairless areas at tail. B: Calf showing circular hairless area at head and around of eye [60]
8.3 Fungal Culture

Fungal culture is considered the ‘gold standard’ for diagnosis [35]. Sabouraud’s dextrose agar (SDA) containing cycloheximide, penicillin and streptomycin were used in most diagnostic laboratories. Plates should be incubated at 25ºC for 5 weeks. Dermatophytes test media (DTM) is recommended as the best media for isolation of dermatophytes because the presence of the red color indicated positive result, this can help in early identification of highly suspected cultures [36]. The isolates should be examined macroscopically for culture characters including (texture, shape and color), pigment production [37] and microscopically after staining with lactophenol cotton blue using wet mount technique [38] (Figs.7-10).

In addition to technique steps mentioned above, pigment production on corn meal agar, urease activity on urea agar base, growth at 37ºC on SDA. Biochemical test were employed to differentiate Trichophyton spp. are enriched media with thiamine and inositol, the isolates are subcultured in this media [39].

8.4 Skin Biopsy

Skin biopsy from active lesion should be collected after clean with 70% alcohol, the area around the lesion must be injected with local anesthesia drug. 1 mm³ tissue should be cut from the edge of circular raised lesion. Skin samples first fixed in 10% formal saline then 5-6 thick paraffin embedded section should be processed. Before staining, xylene must be used to remove paraffin. Two kinds of stains can be used haematoxylin and easin for histopathological examination and Grocott methenamine for demonstration of fungal hyphae in tissue sections [40] (Figs.11-14).

9. SERODIAGNOSIS

Two different recombinant forms of Trichophyton rubrum dipeptidyl peptidase V (TruDppV) and T. rubrum leucin aminopeptidase 2 (TruLap2), which are 98% identical to Trichophyton verrucosum orthologues were used for identification of T.verrucosum isolated from cattle by ELISA. Detection of specific antibodies against DppV gave 89.6% sensitivity, 92.7% specificity, a 96.8% positive predictive value, and a 78.4% negative predictive value. The recombinant TruLap2-based ELISA displayed 88.1% sensitivity, 90.9% specificity, a 95.9% positive predictive value, and a 75.7% negative predictive value [41].

10. MOLECULAR IDENTIFICATION

Diagnosis with conventional methods is time-consuming because it might take up to 4 weeks or longer to give the final results [1]. Furthermore, morphological identification may be confusing due to polymorphism of dermatophytes [42]. During the last decade, a wide variety of molecular techniques has become available as possible alternatives for routine identification of fungi in clinical microbiology laboratories [43,44]. Two different molecular techniques for identification of dermatophytes isolated from cattle were done by Dalis et al. [45]; the first was the use of polymerase chain reaction (PCR) to amplify the internal transcribed spacer regions of the ribosomal DNA using ITS-1 and ITS-4 as primers. Restriction fragment length polymorphism analysis the amplified ITS regions
using the enzyme MvaI to identify dermatophyte species. The second technique was a PCR using the short oligonucleotide 5'-GACAGACAGACAGACA GACA-3' as primer for the RAPD typing of the isolates for identification of dermatophytes based on species specific profiles. (Figs.15-16).

Three specific primers were used by Ismaeel [46] to amplify small subunit ribosomal RNA gene of *Trichophyton* spp. (Fig. 17).

![Microscopic examination of infected hair](image1)

Fig. 6. Microscopic examination of infected hair: (A) Endothrix arrangement of arthrospore and (B) Ectothrix arrangement of arthrospore [60]

![Growth of T. verrucosum](image2)

Fig. 7. *T. verrucosum* showing very slow growing, with heaped up, button like appearance folded white colored colony [22]

![Growth of T. verrucosum](image3)

Fig. 8. Growth of *T. verrucosum* (a) on T1 vitamin free (b) T3 with inositol and thiamine media [23]
Fig. 9. Wet mount from *T. verrucosum* culture show broad, irregular hyphae and the chains of chlamydospores [25]

Fig. 10. Wet mount from *T. verrucosum* culture show macroconidia have a rat-tail or string bean shape [60]

11. TREATMENT

Optimal therapy of dermatophytosis requires a combination of topical antifungal therapy, concurrent systemic antifungal therapy and environmental decontamination. The treatment should be continued until two consecutive negative cultures (at weekly or bi-weekly intervals) are obtained [13]. Topical treatments speed resolution of clinical lesions and may help prevent zoonotic contagion. Systemic therapies that have prolonged residual activity in the skin and hair provide the most effective treatments.

11.1 Topical Therapy

1. Zinc oxide [47]
2. Thiabendazole[48]
3. Ointment containing benzoic acid 6 g, salicylic acid 3 g, sulfur 5 g, iodine 4 g and vaseline 100 g [15]
4. 1% tioconazole [49]
5. enilconazole (10%) [50]
6. Whitfield’s ointment [51]
7. Silver Nitrate [52]
8. Natamycin [53]

11.2 Systemic Therapy

1. Ivermectin 200 micrograms /Kg. [54,55].
2. Griseofulvin10 mg/kg body weight for 7 days in mild infections; in severe cases 2–3 weeks [13].

11.3 Environmental Decontamination

Clinafarm can be used for disinfecting of environment with spray or smoke generator [56].

11.4 Vaccination

A live vaccine of *Trichophyton verrucosum* was used to control cattle dermatophytosis [57], while an attenuated strain of *Trichophyton verrucosum* was reported by [58]. In case of herd the use of attenuated vaccine led to decrease of new infected herds from 1.7% in 1980 to 0.043% in 2004 [59].

Fig. 11. Skin section showing marked hyperkeratosis of the stratum corneum of epidermis H & E x100 [40]

Fig. 12. Hair follicles showing excessive keratinization and destruction due to abscess H & E x100 [40]
Fig. 13. Hair follicles showing fungal hyphae in longitudinal section in keratinized mass GMS x 200 [40]

Fig. 14. Hair follicles showing fungal hyphae in cross section in keratinized mass GMS x 200 [40]

Fig. 15. Agarose gel electrophoresis showing amplification of the 600 bp ITS region of *T. mentagrophytes* by PCR. Lane M, molecular weight marker, Lanes (1–23), isolates 12, 13, 26, 32, 37, 45, 47, 58, 62, 78, 81, 83, 95, 120, 139, 215, 237, 321, 332, 345, 380, 415, and 427 phenotypically identified as *T. mentagrophytes* and lane–v, negative control [44]
Fig. 16. Agarose gel electrophoresis of MvaI digestion products for the 600 bp ITS region of *T. mentagrophytes*. Lane M, molecular weight marker; lanes (1–9), isolates, 12, 13, 26, 32, 37, 45, 47, 58, and 62 (approximately, 320 and 280 bp), lanes 10–16, isolates 78, 81, 83, 95, 120, 139 and 215 (approximately, 350 and 250 bp) [44]

Fig. 17. Show under UV light by use Agarose gel in electrophoresis analysis apparatus that shows the PCR product analysis of small subunit ribosomal RNA gene in Trichophyton spp. isolates. M: marker (range between 100 to 2000bp), lane (1-12) some of positive Trichophyton spp. in (540bp) PCR product size [45]

12. CONCLUSION

Dermatophytooses are the most common fungal infections in cattle. Many studies were done considering different aspects of the disease (eg. epidemiology, clinical features, diagnosis, treatment, prevention, and control). Due to economic impact and health problem of the disease in cattle vaccination and improved hygiene, may be useful for managing ringworm.

13. RECOMMENDATIONS

More studies will be done in molecular identification and vaccination of dermatophytosis in cattle.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

2. Wabacha JK, Gitau GK, Bebora LC, Bwanga CO, Wamuri ZM, Mbithi PM. Occurrence of dermatomycosis (ringworm) due to *Trichophyton verrucosum* in dairy calves and its spread to animal attendants.
1. Abdalla, AJRAVS, 3(4): 1-12, 2019; Article no.AJRAVS.49906

17. Abou-Eisha AM, Sobih MA, Hanaa MF, Heba SE. Dermatophytes in animals and their zoonotic importance in Suez Canal area. SCVMJ. 2008;XIII(2).

© 2019 Abdalla; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/49906